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Methane plays an important role in atmospheric and astrophysical chemistry. Its

rotation—-vibration spectrum is of key importance for models of the atmospheres of |.IIIB IIStﬂ‘“'““I‘St III'IIIBIII|BS : | e

. bodies ranging from Titan to brown dwarfs. However the lack of precise data on e e : -, = —
) methane spectra, particularly at higher temperatures, has severely limited models for ® [ Ab inftio calculations: } o |
atmospheres as diverse as Jupiter, exoplanets and brown dwarfs and made it diffifult ' 3
to determine its actual quantity. Consequently we have embarked on a major project [ ¥ v s\
v exomol com ExoMol [1] to fill this gap. Here we present a prelimenary line list for methane h —{ eerey Jﬁ L Moment } =
containing almost ten billion transition that should be sufficiently complete and accurate to replicate 5 s
. observed spectra at temperatures up to 1500 K. This computationally-derived line list details kKl MOLPRO MOLPRO
transition frequencies and associated Einstein coefficients, lower energy Ievels and quantum T - Y
numbers. Hot temperature spectra of methane simulated using : [ ibration totional J il
this line list will be presented and compared to different . . motion of nuclel ' | 2
experimental spectra of methane available in the literature as | . 9 - R T N
well as generated using other line lists. Our '10to10' line list for |5 ' Rovibiﬁona, | » ' PT——" .
CH4 will be suitable for use in modelling the spectra of planetary |8 ‘_’L ___energies JDV-R3D/'I;'ROVEL __ UEEEEE ]j ‘
and stellar objects. < ' T, S [ mt;nsities(A; J
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Size of the problem
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CH, hot spectrum CH, spectra: Temperature effect Comparison with other theoretical line
lists (T=1000K):
Here we compare our intensities (T=1275) with the At high temperatures the band structure of the spectrum is  Here we compare the ExoMol room temperature cross
experimental spectra of methane at T=1300K. flattened. sections with that by Nikitin 2013 (VAMDC).
10719 L1 | 1 — 1E-17 uuuiie iy 11y I l 1 1 | | | I T=1 OOK
= T=300K 20
1B-18+ —— T=1000K |[ 1079
1E-19 - — T=1500K |} -
o . 1E-20- T=2000K || .1024 ExoMol
E 3 1E-214 | ) *‘fﬂ% L g i
£ s 1E224hA | 4 N N 9107+
5 é 1E-23 1 “(& ' i 5 -
z O E-24- - 210" nttp:/ivamde.icb.cnrs fi/
5 [ 2 {R-25- - 5 ] [
= L é 1E-26 1 L =10 ] Warmbier 2009 |
I = 1B-27- L -y _
OR——— 1B-28 - wavenumber, 1/cm [ 4 l L
1072? PN I I 1E- 29 LLLOLR I I I I | T | T 10'32 Wavelnumber!”cm
} 1 2 3 4 5 6 7 8 9 10 | é 4 s 8 10 12 ; | 3 3456"%‘9"1'6'
wavelength, um wavelength, um wavelength, um
Nikitin, Boudon, Wenger, Albert, Brown, Bauerecker, Quack, PCCP 15, 10071 (2013)
Nassar and Bernath, JQSRT 82, 279 (2003) Warmbier, Schneider, Sharma, Braams, Bowman, P. H. Hauschildt A&A 495, 655 (2009)
Hargreaves et al, ApJ 757, 46 (2003)
1X1O 18 1 | 1 ] 1 ] 1 ] L | L |
. ExoMoI
1x10
-26
1x10 1 010 I
| INeS
1x10
] 8
T xi07i 325881 |
| ® x ‘-i’% £ ;
1x107] HITRAN12 Esiolng b
» wavenumber 1/cm
: | . | . | . | . | : | : T : | .
10000 9000 3000 7000 §1000 5000 4000 3000 2000 1000
m 2 4 6 8 10
This work was supported by the ERC under Advanced Investlgator PrOJect 267219 andothe UK STFC The calcuiatlons were performed on the DlRAC faC|I|t|es COSMOS and Dar\Nm
© - . ’ . @ E |

P - : : * : : 3 Ve e ~ °



	Page 1

