Ultra-cool dwarf radio emissions: recent advancements and comparison with (extra-) solar system planets J. D. Nichols

4 September 2013 Exoplanets and Brown Dwarfs: Mind the Gap University of Hertfordshire

Why the interest?

- Radio emissions = magnetosphere
- Magnetic field related to:
 - Formation, evolution and interior structure (e.g. Chabrier et al., 2007; MacDonald & Mullan, 2009)
 - Atmospheric dynamics, temperature and composition (e.g. Browning et al., 2008, Miller et al. 2013)
 - Interaction with primaries, satellites and space environment (e.g. Cuntz et al., 2000; Shkolnik et al., 2003; Nichols 2012; Noyola et al., 2013)
 - Detectability and photometry (e.g. Zarka et al., 2007, McLean et al., 2011)
 - Habitability (e.g. Lammer et al., 2009; Griessmeier et al., 2009)

Relation to v sin i

Radio emission observational studies:

Berger et al., 2001, 2002, 2006, 2010 Hallinan et al., 2006, 2007, 2008 Phan-Bao et al., 2007 McLean et al., 2011, 2012 Burgasser et al., 2005, 2013 Antonova et al., 2008, 2013 Ravi et al., 2011 Route & Wolszczan, 2012, 2013...

Theoretical studies:

Schrijver, 2009 Yu et al., 2011, 2012 Kuzetsnov et al., 2012 Nichols et al., 2012...

Quiescent and pulsed emission

~I MW Hz^{-I} spectral luminosity

Quiescent: unpolarised, probably either synchrotron or depolarised maser emission

Spikes 75-100% circularly polarised, with <0.15 phase duty cycle, high ~10⁸ K brightness temperature: maser emission

Stellar models: active regionsYu et al. (2010)Kuznetsov et al. (2011)

Jupiter: our own pulsar*

6

*OK a very weak pulsar

Jupiter's DAM radio emission

FWHM ~50° ~0.14 duty cycle

UV, visible, IR aurora

CMI

Radio

0

UV, visible, IR aurora

CMI

Radio

0

UV, visible, IR aurora

CMI

Radio

0

MAGNETIC MIRROR

8

CMI

Radio

0

Thursday, 17 October 13

Magnetosphere-ionosphere coupling at Jupiter (1)

Magnetosphere-ionosphere coupling at Jupiter (1)

Momentu equation

1.0

0.8

0.6

 $\Omega_J)$

$$\frac{\rho_e}{2} \frac{d}{d\rho_e} \left(\frac{\omega}{\Omega_J}\right) + \left(\frac{\omega}{\Omega_J}\right) = \frac{4\pi \Sigma_P^* F_e |B_{ze}|}{\dot{M}} \left(1 - \frac{\omega}{\Omega_J}\right)$$
Equatorial radial current

$$I_{\rho} = 4\pi \Sigma_P^* \rho_i^2 (\Omega_{UCD} - \omega) B_i$$

University of VT-VI TAM HABEANT Leicester

Thursday, 17 October 13

Magnetosphere-ionosphere coupling at Jupiter (2)

Isbell et al. (1984)

$$\left(\frac{\omega}{\Omega_p}\right) = \frac{\mu_0 \Sigma_P^* v_{sw}}{1 + \mu_0 \Sigma_P^* v_{sw}}$$

Thursday, 17 October 13

Ultra-cool dwarfs Ionospheric field 0.3 T Rotation period 2 h

Comparison with observations

Solitary UCDs with confirmed CMI radio emissions and known rotation periods

15

Nichols et al. (2012)

Causes for angular velocity shear

$$\left(\frac{\rho_H}{R_{UCD}}\right) = \left(\frac{2\pi\Sigma_P^* B_{eq}^2 R_{UCD}^2}{\dot{M}}\right)^{1/4} \simeq 775$$
$$\left(\frac{R_{mp}}{R_{UCD}}\right) = \left(\frac{k_m^2 B_{eq}^2}{2\mu_\circ(p_{th} + p_{dyn} + p_B)}\right)^{1/6} \simeq 713 - 820$$

$$\left(\frac{\omega}{\Omega_p}\right) = \frac{\mu_0 \Sigma_P^* v_{sw}}{1 + \mu_0 \Sigma_P^* v_{sw}} \sim 3\% \text{ for } 0.5 \text{ mho and } 50 \text{ km/s}$$

TVLM 513: comparison with H-a

Exoplanets... radio observable?

Exoplanets... radio observable?

Thursday, 17 October 13

Two hot Jupiter mechanisms

20

Ganymede-like

Zarka et al., 2007

Farrell et al. 1999, 2004; Zarka et al. 2001, 2007; Lazio et al. 2004; Cameron 2008; Fares et al. 2010)

University of

Leicester

Radio emission observational studies:

Bastian et al. 2000 Ryabov et al. 2004 Winterhalter et al. 2005 George & Stevens 2007 Lazio & Farrell 2007 Smith et al. 2009 Lecavelier des Etangs et al. 2009, 2011, 2013 Lazio et al. 2010a, 2010b...

Theoretical studies:

Zarka et al., 2001, 2007 Farrell et al., 2004 Lazio et al, 2004 Greissmeier et al., 2005, 2007 Jardine & Cameron, 2008 Hess & Zarka, 2011 Nichols, 2011, 2012 Noyola et al., 2013...

Radio emission observational studies:

Bastian et al. 2000 Ryabov et al. 2004 Winterhalter et al. 2005 George & Stevens 2007 Lazio & Farrell 2007 Smith et al. 2009 Lecavelier des Etangs et al. 2009, 2011, 2013 Lazio et al. 2010a, 2010b...

Theoretical studies:

Zarka et al., 2001, 2007 Farrell et al., 2004 Lazio et al, 2004 Greissmeier et al., 2005, 2007 Jardine & Cameron, 2008 Hess & Zarka, 2011 Nichols, 2011, 2012 Noyola et al., 2013...

Radio emission observational studies:

Bastian et al. 2000 Ryabov et al. 2004 Winterhalter et al. 2005 George & Stevens 2007 Lazio & Farrell 2007 Smith et al. 2009 Lecavelier des Etangs et al. 2009, 2011, 2013 Lazio et al. 2010a, 2010b...

Theoretical studies:

Zarka et al., 2001, 2007 Farrell et al., 2004 Lazio et al, 2004 Greissmeier et al., 2005, 2007 Jardine & Cameron, 2008 Hess & Zarka, 2011 Nichols, 2011, 2012 Noyola et al., 2013...

HAT-P-11b

A third mechanism: rotation

Momentum equation

$$\frac{\rho_e}{2} \frac{d}{d\rho_e} \left(\frac{\omega}{\Omega_J}\right) + \left(\frac{\omega}{\Omega_J}\right) = \frac{4\pi \Sigma_P^* F_e |B_{ze}|}{\dot{M}} \left(1 - \frac{\omega}{\Omega_J}\right)$$

Computation of radio flux density

Limiting conductance required for rigid corotation

$$\Sigma_{P \ lim}^* \approx 0.956 \frac{\dot{M}}{B_{\circ} F_{\circ}} \left(\frac{R_{mp}}{R_p}\right)^m$$

How does conductance depend on distance from the star?

$$\Sigma_P^* = \left(\frac{L_{EUV \text{ star}}}{L_{EUV \text{ sun}}}\right)^{1/2} \frac{2.6}{R_{orb}} + 3$$

Precipitating electron energy flux converted to beamed radio power output with bandwidth equal to the electron cyclotron frequency

$$E_{fS} = \frac{E_{f\circ}}{2} \left(\frac{j_{||i}}{j_{||i\circ}}\right)^2$$

$$P_e = \int_0^{90} 2\pi R_J^2 \sin \theta_i \ E_f \ d\theta_i$$

$$P_r = \frac{P_e}{100}$$

$$F_r = \frac{P_r}{1.6s^2 \Delta \nu} \quad \Delta \nu = \frac{eB_{eq}}{\pi m_e}$$

Results over larger parameter space

Results

40 stars within 25 pc, which have planets and measured or estimated values of Lx

Alias	Sp. Type	s/pc	dec	$Log(L_X/W)$	\mathcal{F} / mJy									
					I	Beg Nich	ols (201	1)	B_{eq} Reiners et al. (2010), 10M					
					$p_{sw\odot} \Omega_p / \Omega_J =$		$\frac{100p_{sw\odot}}{\Omega_p/\Omega_J} =$		$p_{sw\odot}$ $\Omega_p/\Omega_J =$		$100p_{sw\odot}$ $\Omega_p/\Omega_J =$			
														1
V* eps Eri					K2V	3.2	-9.5	21.32 (R)	0.61	18.21	0.49	11.63	31.43	282.87
HIP 85523	M2+V	4.5	-46.9	20.53 (R)	0.30	9.04	0.24	5.78	15.62	140.56	2.55	22.95		
V* IL Aqr	M3.5V	4.7	-14.3	19.49 (R)	0.28	8.38	0.23	5.37	14.49	130.42	2.37	21.35		
LHS 3685	M2/3V	4.9	-49.0	19.77 (R)	0.25	7.59	0.21	4.86	13.13	118.19	2.15	19.33		
LHS 349	G5V	8.5	-18.3	19.87 (R)	0.08	2.55	0.07	1.64	4.42	39.75	0.72	6.50		
HR 7722	K3V	8.8	-27.0	20.23 (R)	0.08	2.39	0.06	1.53	4.13	37.15	0.67	6.07		
LHS 311	G3/5V	9.2	-40.5	19.78 (R)	0.07	2.17	0.06	1.39	3.75	33.78	0.61	5.53		
LHS 310	M3V	10.2	26.7	19.84 (R)	0.06	1.77	0.05	1.13	3.06	27.56	0.50	4.51		
LHS 3257	M1V	10.3	25.7	19.25 (S)	0.06	1.74	0.05	1.11	3.00	27.03	0.49	4.43		
HD 13445	K1V	10.9	-50.8	20.61 (R)	0.05	1.57	0.04	1.00	2.71	24.36	0.44	3.98		

Nichols (2012)

Results

51 stars within 25 pc, which have measured or estimated values of Lx > 100 x solar

	Sp. Type	s/pc	dec	$Log(L_X/W)$	\mathcal{F} / mJy								
Alias					B_{eq} Nichols (2011)				Beg Reiners et al. (2010), 10M.				
					$p_{sw\odot} \Omega_p / \Omega_J =$		$100p_{sw\odot}$ $\Omega_p/\Omega_J =$		$p_{sw\odot} \Omega_p / \Omega_J =$		$100p_{sw\odot}$ $\Omega_p/\Omega_J =$		
CPD-28 332	F9-V	8.7	-28.2	22.66 (R)	0.19	3.31	0.07	1.71	4.64	41.77	0.73	6.54	
V* FF And	MOVEP	8.6	-20.6	22.38 (R)	0.15	2.84	0.07	1.69	4.59	41.34	0.73	6.56	
V* AT Mic	M1VE	9.9	-31.3	22.74 (R)	0.15	2.55	0.06	1.32	3.57	32.14	0.56	5.03	
V* AK Pic	M4.0V	10.2	-32.4	22.55 (R)	0.13	2.25	0.05	1.23	3.34	30.03	0.52	4.72	
V* BY Dra	MOVP	11.5	-43.8	22.60 (R)	0.10	1.78	0.04	0.97	2.64	23.72	0.41	3.73	
V* V834 Tau	GOV	12.8	47.7	22.70 (R)	0.09	1.55	0.03	0.80	2.17	19.51	0.34	3.05	
HIP 61941B	F1V+F0	11.8	-1.4	22.42 (R)	0.08	1.51	0.04	0.90	2.45	22.05	0.39	3.50	
/* OU Gem	GOV	21.7	33.9	23.66 (R)	0.10	1.36	0.01	0.33	0.92	8.24	0.13	1.17	
V* V775 Her	K4Vke	13.5	20.9	22.57 (R)	0.07	1.29	0.03	0.71	1.92	17.27	0.30	2.72	
* tet Boo	F8V	14.6	51.9	22.63 (R)	0.06	1.11	0.03	0.61	1.64	14.80	0.26	2.33	

Nichols (2012)

lo-Jupiter-type interaction

Nichols (2012)

LOFAR observations underway...

Ups Andromeda Eps Eridani Tau Bootes HAT-P-11 HD 189733 Corot-7

Watch this space...

NUV transits may also reveal B field

Excited much discussion...

Lai et al., 2010 Vidotto et al., 2010, 2011 Llama et al., 2011 Haswell et al., 2012 Bisikalo et al., 2013 Turner et al., 2013

This October: 20 HST/COS orbits scheduled to observe 4 NUV transits of WASP-12b.

Again, watch this space...

Summary

Ultra-cool dwarfs are magnetised, with myriad implications.

- ~10% exhibit radio emissions. Most quiescent (synchrotron or depolarised CMI emission), some bursty (CMI). Fast rotation is important.
- Showed that a Jupiter-like M-I coupling current system is consistent with observations. Indicates interaction with ISM or satellite plasma source.
- Close-orbiting, or fast rotating more distant orbiting exoplanets may exhibit detectable emissions. LOFAR search underway.
 - Auroral emission or asymmetric transits may offer further clues.

