New Evidence for a Substellar Over-Luminosity Problem

Trent Dupuy

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Michael Liu, Michael Ireland

Directly imaged planets

Dupuy et al. (2009, 2011)

How do we test the models?

- measure: $L_{\text{bol},1}$ $L_{\text{bol},2}$ and M_{tot}
- at each age compute M_1 and M_2 from L_{bol} values using model
- apply M_{tot} constraint to the computed $M_1 + M_2$ values to get age

Pros:

- retains high precision of the input mass, L_{bol}

- readily derive any physical property

Dupuy et al. (2010)

Trent Dupuy (CfA/SAO)

First Test of Substellar Luminosity Evolution

 $M_{tot} = 0.1095 \pm 0.0022 M_{\odot}$ where M_{o} model-derived age: 450 ± 30 Myr

HD 130948

Dupuy et al. (2009)

Mamajek & Hillenbrand (2008)

Trent Dupuy (CfA/SAO)

First Test of Substellar Luminosity Evolution

 $M_{\text{tot}} = 0.1095 \pm 0.0022 M_{\odot}$ \checkmark model-derived age: 450±30 Myr

Age Indicator	Age (Myr)	Error
Gyrochronology	790±190	25%
Chrom. activity	500±300	60%
Isochrones	300–2500	≈2×
X-ray activity	≈Hyades	
Lithium	≈Hyades	

<u>References</u> — Mamajek & Hillenbrand (2008); Barnes (2007); Takeda et al. (2007); Stern et al. (1995); Gaidos (1998); Gaidos (2000); Hünsch et al. (1999); Stelzer & Neuhäuser (2001); Soderblom et al. (1993a,b,c)

HD 130948

Dupuy et al. (2009)

Trent Dupuy (CfA/SAO)

First Test of Substellar Luminosity Evolution

HD 130948

Dupuy et al. (2009)

*Luminosity problem": evolutionary models under-luminous
HD 130948BC model age inconsistent with primary star

Initial mass function

Directly imaged planets

Luminosity problem: Model-derived mass too high? 5 M_{Jup} 7 M_{Jup} **Dynamical stability analysis** shows model-derived masses likely too high by 20–30% (Gozdziewski & Migaszewski 2009; Fabrycky & Murray-Clay 2010) 7 M_{Jup} HR 8799 planetary system (Marois et al. 2008)

Luminosity Problem

Caveats

• What if the star's rotation period was affected by the presence of these companions?

•Are the errors on the gyro age really Gaussian?

• Can you really trust the age for a single star?

Mamajek & Hillenbrand (2008)

HD 130948BC

- 47 AU projected separation from G1-type host star
- 790 Myr (±0.08 dex) gyro age
- [Fe/H] = 0.05
- L4+L4 spectral types

Gliese 417BC

- 1970 AU projected separation from CO-type host star
- 750 Myr (±0.08 dex) gyro age
- [Fe/H] = 0.09
- L4.5+L6 spectral types

Mamajek & Hillenbrand (2008)

Dusty

 $\Delta age = 0.25 \pm 0.09 \text{ dex}$ $\Delta age = 0.17 \pm 0.08 \text{ dex}$

 $\Delta age = 0.21 \pm 0.06 dex$

Masses derived from L_{bol} + age

Dusty

Mass derived from models too high by ≈0.1 dex

Trent Dupuy (CfA/SAO)

Trent Dupuy (CfA/SAO)

Trent Dupuy (CfA/SAO)

• Models really do under-predict the luminosity of $\approx 45-55 M_{Jup}$ brown dwarfs at ≈ 800 Myr (at 4σ).

• Models really do under-predict the luminosity of $\approx 45-55 M_{Jup}$ brown dwarfs at ≈ 800 Myr (at 4σ).

- Why?
 - Model radii are probably not to blame transiting brown dwarfs around these masses agree well.

• Models really do under-predict the luminosity of $\approx 45-55 M_{Jup}$ brown dwarfs at ≈ 800 Myr (at 4σ).

- Why?
 - Model radii are probably not to blame transiting brown dwarfs around these masses agree well.
 - Magnetic fields never made much sense...

• Models really do under-predict the luminosity of $\approx 45-55 M_{Jup}$ brown dwarfs at ≈ 800 Myr (at 4σ).

• Why?

- Model radii are probably not to blame transiting brown dwarfs around these masses agree well.
- Magnetic fields never made much sense...
- Cond models actually agree better, even for these dusty L dwarfs → patchy clouds?

• Models really do under-predict the luminosity of $\approx 45-55 M_{Jup}$ brown dwarfs at ≈ 800 Myr (at 4σ).

• Why?

- Model radii are probably not to blame transiting brown dwarfs around these masses agree well.
- Magnetic fields never made much sense...
- Cond models actually agree better, even for these dusty L dwarfs → patchy clouds?
- Beware that the various models make quite different predictions for the L_{bol} evolution of substellar objects.