Counterparts to X-ray sources from the Chandra Galactic Bulge Survey (GBS)

Sandra Greiss¹, Danny Steeghs¹, Peter Jonker², Manuel Torres², Tom Maccarone³, Robert Hynes⁴, GBS collaboration

- ¹ University of Warwick
- ² SRON, Netherlands Institute for Space Research, Utrecht
- ³ University of Southampton
- ⁴ Louisiana State University

Outline

- GBS
- VVV
- Cross-matching GBS and VVV
- Results
- Conclusion

The Chandra Galactic Bulge Survey (P. Jonker et al, 2011)

1. Main goals:

- Determine accurate mass measurements of rare X-ray binaries
- Study binary formation and evolution by finding binaries in the bulge (prediction to find ~6 LMXBs, ~120 qLMXBs, ~32 UCXBs, ~1 qUCXB, ~62 non mag CV, ~152 IPs, ~596 RS CVns, ~160 W UMa and ~9 Be X-ray Binaries)
- Select binary objects for optical spectroscopy
- 2. Chandra and optical (r, i, $H\alpha$) imaging of two strips 6° x 1° , centered at 1.5° above and below the Galactic centre
- 3. Accurate X-ray positions (using X-ray counts)

 $N_{\rm H} (10^{22} \ {\rm cm}^{-2})$ 3 Simulation of X-ray Binaries **Population** (G. Nelemans) Galactic latitude (゚) \sim ▲ LMXBs • qLMXBs • UCXBs ◆ qUCXBs

Galactic longitude (°)

The Chandra Galactic Bulge Survey (P. Jonker et al, 2011)

- 4. High extinction and high density of sources in the bulge → Multi-wavelength data is required to distinguish between true counterparts and field stars
- 5. 1234 unique X-ray sources detected by Chandra in that region (magenta points)
- 6. Southern part of GBS area is to be covered by Chandra in the very near future

VISTA Variable in the Via Lactea (VVV)

- Main goal is to construct a 3-D map of the surveyed region by using variable stars
- Total area covered: 520 deg² of the Galactic bulge and plane
- Broad-band filters used: Z Y J H Ks
- VVV overlaps with GBS → used to get nearinfrared data of the 1234 X-ray sources

Cross-matching GBS and VVV

- Search for all J, H and Ks matches in VVV within 5" of X-ray position
- Calculate magnitudes and errors:

Mag = $ZP - 2.5 \times log_{10}(flux/exptime) - apcor - percorr$

- Band-merge VVV catalogs
- Compare matches in J, H and Ks
- Compare VVV magnitudes with UKIDSS GPS and 2MASS

Close-up of 20" x 20" in J-band

Close-up of 20" x 20" in H-band

Close-up of 20" x 20" in Ks-band

July 25, 2011 10

Results

 VVV catalogs do not have the same matches in J, H and Ks (Ks catalogs have more detected sources than J and H)

UKIDSS J- band (DR7)	UKIDSS H- band (DR7)	UKIDSS K- band (DR7)	VVV J- band	VVV H- band	VVV Ks- band	MOSAIC (Optical)
625	596	963	1128	1128	1168	1034
50%	48%	78%	91%	91%	94%	83%

Ks-band

H-band

J-band

VVV vs UKIDSS

VVV vs 2MASS

Version v1.0 vs version v1.1

Additional data

- VVV helped select the optical sources for followup with VIMOS (Visible MultiObject Spectrograph, on the Melipal telescope)
- Complementary Optical (r, i, $H\alpha$) Survey to GBS (R. Hynes et al), which is mainly a variability survey
- VVV will help us find eclipsers, orbital periods and eventually the variable sources within our selected objects
- SWIFT

VIMOS pre-image

UKIDSS K-band

VI_SREI_544377_2011-04-08T08:52:35.675_R_Q4_lo.fits

UKIDSS GPS DR6

VVV J-band

v20100327_00864

VVV Ks-band

v20100327_00852

VIMOS pre-image

UKIDSS K-band

VI_SREI_453498_2011-03-30T08:28:50.643_R_Q1_lo.fits

UKIDSS GPS DR6

VVV J-band

VVV Ks-band

v20100407_00319

v20100407_00307

Conclusion

- Early stages of the survey but we can see that it is a step up from previous NIR Galactic Plane surveys.
- Good coverage for now and good images
- NIR helps us the select the sources for follow-up
- Time variability (using several epochs) will help us find accreting objects, which is the main goal of the GBS
- VPHAS+ coverage will overlap with the GBS fields

THANK YOU